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A B S T R A C T   

We have employed supervised machine learning methods to model measurements of corrosion rates of carbon 
steel as a function of time when corrosion inhibitors are added in different dosage and dose-schedules. The 
experiments show that the time-profile of corrosion rates depend on the dose schedule, while the final rates 
depend mainly on the environment severity. We find that Random Forest was the best algorithm that predicted 
the entire time-profile of corrosion rates with the mean squared error ranging from 0.005 to 0.093. Sensitivity of 
corrosion rates to changes in the environmental variables are well-predicted by the trained Random Forest 
model.   

1. Introduction 

Corrosion inhibitors are commonly used to mitigate internal corro-
sion of oil and gas pipelines [1–3]. These molecules are injected in 
parts-per-million (ppm) concentrations in a continuous or 
semi-continuous manner. It is understood that corrosion inhibitor mol-
ecules adsorb at the metal-water interfaces, with their adsorption chiefly 
governed by the strong affinity of the polar group for the metal surface 
as well as hydrophobic interactions between their tails [1–6]. It is 
important to ascertain the optimal dosage as well as the frequency of the 
doses of corrosion inhibitors needed to minimize corrosion of the 
pipelines [7]. For this purpose, extensive experimentation is carried out 
wherein the corrosion rates of steel specimen are measured in different 
environmental and operational conditions and by using different dos-
ages and dose-schedules of inhibitors. These experiments are 
time-consuming and costly but are nevertheless necessary, in the 
absence of reliable theoretical models. 

While mechanistic models of corrosion prediction in the absence of 
inhibitors have been developed and implemented for commercial pur-
poses [8–12], there has been little success in incorporating the effect of 
corrosion inhibitors in these models. One difficulty is that the exact 
mode of action of corrosion inhibitors remains unclear [2]. Secondly, the 

efficiency of the inhibitors depends on a large number of environmental 
and operational factors, such as temperature, water chemistry, flow rate, 
etc. [13]. Thirdly, different inhibitor molecules are observed to perform 
optimally under different conditions for reasons unknown [14–17]. 
Lastly, corrosion inhibitor formulations used in the field are mixtures of 
molecules that supposedly work in synergy. Often, the composition of 
corrosion inhibitor formulations is not disclosed to the oper-
ator/researcher as it is proprietary knowledge belonging to the manu-
facturers, making it all difficult to model their behavior. 

Along with experimental methods, molecular modeling has been 
employed for elucidating the molecular-level adsorption behavior of 
corrosion inhibitors [6,18–23]. However, molecular modeling can 
mostly help with understanding of the adsorption behavior of inhibitor 
molecules and not how they retard corrosion. Therefore, developing 
theoretical models to explain the performance of corrosion inhibitors 
remains a challenging task. 

In the last decade, machine learning (ML) has been employed in a 
number of corrosion-related problems, such as for modeling CO2 
corrosion [24], detecting corrosion from automated image analysis [25], 
modeling corrosion defect growth in pipelines [26], material inspection 
[27], modeling corrosion rate in marine environment [28], finding 
corrosion initiation time of embedded steel in reinforced concrete [29], 
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predicting electrochemical impedance spectra [30], modeling pipeline 
aging [31], and characterizing the spatial distribution of pitting corro-
sion [32]. 

In this work, we have performed regression using different ML al-
gorithms (Artificial Neural Network, Random Forest, Support Vector 
Machines, and K Nearest Neighbors) to model experimental data of time- 
varying corrosion rates of mild steel specimens, when corrosion in-
hibitors were added to the system in different concentrations and dose- 
schedules. We demonstrate that the trained ML models are quite accu-
rate in predicting the time-dependent and steady-state corrosion rates of 
laboratory experiments. Furthermore, a few experiments reported sig-
nificant scatter in the data even in well-controlled experimental condi-
tions. In these cases, ML models are found useful in predicting which 
experimental results may be less trustworthy. 

2. Methodology 

2.1. Description of the experimental data 

The experimental data used was obtained from a series of experi-
ments on corrosion inhibition of mild steel in CO2 aqueous solutions. In 
the experiments, the inhibited corrosion rate, which changes over time, 
was measured by using Linear Polarization Resistance (LPR). The ex-
periments were conducted independently at four different laboratories, 
using mild steel coupons with identical chemical composition, shown in 
Table 1, and two different organic corrosion inhibitors (CI-1 and CI-2). 
The experimental matrix was designed to cover a large parameter space 
as shown in Table 2. Individual experiments lasted between one and 
seven days and were conducted at CO2 partial pressures between 0.5 and 
12 bar at temperatures between 80 ◦C and 130 ◦C. In some cases, the pH 
of the solution was controlled at pH 6 while in others that was not the 
case. Overall, there were 25 different experimental conditions, with 
many experiments replicated multiple times (26,855 corrosion rate data 
points in total). The corrosion inhibitors were added to the solution at 
different times, in different dosages, and by using various dosing 
schedules. Some of the experiments were conducted with “pre-corro-
sion”, meaning that the steel specimens were allowed to corrode for 
some time, before the first dose of the inhibitor was added. In shorter 
duration experiments, the addition of the inhibitor was done as a single 
dose, while sequentially increasing dosing was performed in longer 
duration experiments. Fig. 1 shows plots of typical corrosion rate data 
taken from two experiments: A) with sequential dosing of the inhibitor, 
starting with 1 ppm and incrementally increasing up to 10 ppm, and B) 
when a single dose of inhibitor was added at 10 ppm. In both cases, 
inhibitor addition was done after a period of pre-corrosion of about 4.5 
h. The corrosion rate started out high, at about 7.2 mm/y in both cases, 
and remained constant during the pre-corrosion period. From Fig. 1A, 
we can observe that already after the addition of 1 ppm of the inhibitor, 
the corrosion rate was reduced approximately by 10-fold, and that every 
next addition reduced the corrosion rate further. At the end of the 
experiment, the corrosion rate was about 0.04 mm/y obtained with 10 
ppm inhibitor, which amounts to an inhibition efficiency of 99.4%. 
Comparing the sequential dosing with the single dose inhibitor injec-
tion, we can observe that a very similar final corrosion rate was achieved 

Table 1 
Chemical composition of mild steel coupons used in experiments.  

Composition Elements 

Cr Mo S V Si C Ni Mn P Fe 

Weight %  0.14  0.16  0.009  0.047  0.26  0.13  0.36  1.16  0.009 Balance  

Table 2 
Environmental and operational input variables (features) considered to model 
corrosion rate as a function of time. The last four features were added to achieve 
accurate modeling of the experiments.  

Description Range Unit Type 

Corrosion inhibitor 
concentration 

[0 – 500] ppm Numerical 

Time [0 – 160] hour Numerical 
CO2 partial pressure [0.51 – 12] bar Numerical 
Temperature [80 – 130] ◦C Numerical 
Corrosion inhibitor type {CI-1, CI-2} − Categorical 
Wall shear stress (20, 277) Pa Numerical 
Brine ionic strength (0.615, 2.31, 0.51) mol/ 

L 
Numerical 

Brine type {A, B} − Categorical 
pH {controlled 6, 

uncontrolled} 
− Categorical 

Prior corrosion inhibitor 
concentration 

[0 – 200] ppm Numerical 

Initial corrosion rate [0.05, 34.10] mm/ 
y 

Numerical 

Type of test {sequential dosing, single 
dose} 

− Categorical  

Fig. 1. Two typical types of corrosion experiments. Inhibitor added in A) sequential dosing, B) single dose. Arrows indicate the concentration in ppm and the time at 
which the corrosion inhibitor was injected into the system. In both experiments: inhibitor type = CI-1, pCO2 = 0.51 bar, T = 80 ◦C, pH = controlled 6, wall shear 
stress = 20 Pa, brine ionic strength = 2.31 M, and brine type = A. 
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(approximately 0.04 mm/y), suggesting that the dosing schedule was 
not an important variable if one is interested in the final corrosion rate. 
However, the kinetics profile in the two cases is significantly different. 
All other experiments in the dataset were of a similar nature, even if the 
details varied. 

2.2. A brief overview of machine learning methods 

Machine learning (ML) methods are suitable for developing predic-
tive models in the cases where a large dataset is available, the outcome 
to be predicted depends on several variables, and when a mechanistic 
model of the relationship between the input variables and the outcome is 
not well established. Before we embark on describing our work in detail, 
it is useful to provide a brief introduction to ML methods used here for 
the readers who are experts in the corrosion field but not necessarily in 
ML. A reader well-versed in ML methods may skip this section. ML refers 
to a class of algorithms that get to learn how to perform a task, such as 
predicting the outcome of an experiment, when they are trained on the 
data obtained from some previously performed experiments [33,34]. 
The ML algorithms that learn from data wherein the outcome of the 
experiment is specified are called supervised learning [34]. Some pop-
ular supervised ML algorithms are Random Forest (RF), Artificial Neural 
Network (ANN), Supported Vector machines Regression (SVR), and K 
Nearest Neighbors (KNN). 

To understand RF algorithm, one needs to first understand what is 
meant by a decision tree. In a decision tree, a dataset is split around 
input variables into smaller subsets. The split is performed so that the 
subsets that are formed have smaller variances in the outcome values. 
Each split can be thought of as a branch of the tree and each data subset 
as a leaf. The data are progressively split until some terminal condition is 
met. The terminal condition can be either that the maximum number of 
splits has been performed or the standard deviation of a subset has fallen 
below a cutoff value. The average value of the outcome in the terminal 
leaf, that is the leaf, which is not split any further, is the predicted value 
of the outcome for those set of input variables. As a simple example, 
imagine a decision tree which is used to predict the corrosion rate as a 
function of two key variables, pH and temperature, is created with a tree 
split with branches pH < 7 and pH ≥ 7. These branches are each further 
split for temperature < 350 K and temperature ≥ 350 K. Then, to pre-
dict the corrosion rate for a condition, say with pH = 4.5 and temper-
ature = 300 K, the average value of the corrosion rate for the leaf: pH 
< 7 → temperature < 350 K is the predicted value of this decision tree. A 
RF is comprised of a multitude of decision trees. The decision trees are 
formed based on random subsets of the training data with replacement 
and using random subsets of features. RF algorithm reports the weighted 
mean value of the predictions from all decision trees. In general, using 
the outcome of many ML models to make the final prediction is called 
ensemble learning, and has been shown to significantly improve the 
prediction performance [35]. Therefore, RF is an ensemble learning 
method based on numerous decision trees. So, in the example discussed 
above, the corrosion rate is the output variable (label) and pH and 
temperature are the input variables (features) [36,37]. 

ANNs are networks of interconnected nodes that act as universal 
approximators, that is, they can approximate any continuous function to 
an arbitrary level of accuracy with a finite number of nodes [38]. The 
architecture of ANN is as follows: In the first layer (named input layer), 
each input variable, xi is fed to a node. Each node in the input layer is 
connected to the nodes in the next layer (called first hidden layer). The 
connections between the nodes are assigned some weights, wij. At each 
node in the first hidden layer, a weighted sum of the inputs from the 
nodes of the input layer is calculated, Fj =

∑

i
wijxi. The Fj is transformed 

via an activation function, such as a sigmoidal function, which is the 
output from each node, xj = 1

1+e− Fj , and which becomes the input from 
node j in the first hidden layer to the nodes in the second hidden layer. 
This process is repeated for all the layers until the output layer is 

reached, which in regression problems is a single node that predicts the 
outcome. Training an ANN architecture entails adjusting the weights 
connecting the nodes so as to minimize the mean squared error between 
the predicted and the actual outcome values/classes [39,40]. 

SVR is another powerful supervised learning algorithm. In general, 
the relationship between the input variables and the label is non-linear. 
In SVR, the input variables are transformed to higher dimensions where 
the relationship may be better linearly separable. In a higher dimension, 
a linear regression line is fitted to the data. For example, a polynomial 
relationship, such as y = a0 + a11x1 + a12x2 + .. + an1xn

1 + an2xn
2 can 

be represented as a 2 n dimensional hyperplane. There are special 
functions called kernels that help in determining the hyperplane in the 
higher dimension without increasing the computational cost [41]. 

KNN is a simple algorithm in which, for each data point, K nearest- 
neighbors are identified in the training set (where K is an integer), 
and the average value of their labels is reported as the outcome of that 
data point [42]. The K nearest-neighbors are identified by defining a 
distance. For numerical input variables, Euclidean distance is commonly 
used, whereas, for categorical variables, Hamming distance is used [43]. 

As discussed above, every ML algorithm has a specific architecture. 
For instance, an ANN is characterized by the number of hidden layers 
and the number of nodes per hidden layer; a RF is characterized by the 
number of trees and the maximum number of features that can be split. 
These parameters that define the architecture of a ML algorithm are 
called hyperparameters [44]. The performance of a ML algorithm on a 
dataset varies as one changes the hyperparameters. Therefore, values of 
the hyperparameters need to be tuned/adjusted to optimize perfor-
mance. In order to tune the hyperparameters, first, the data should be 
split into a training set and a testing set. The training set is often taken as 
70–80% of the entire dataset. The optimum values of the hyper-
parameters are found by evaluating the performance of all ML models on 
the training set. Once the hyperparameters are fixed, the best ML algo-
rithm is trained on the training set, and then its performance is evaluated 
on the testing set. 

In this work, we have developed a number of different predictive 
models of corrosion rates of carbon steel as a function of time, when 
corrosion inhibitors are added to the system in different dosages and 
dosing schedules, using the different ML algorithms (ANN, RF, SVR, 
KNN). The ML-based models are useful in predicting corrosion rates at 
different environmental and operational conditions and alleviate the 
need for further experimentation. Our analysis shows that RF is the best 
ML algorithm for this type of modeling for a given data. The details of 
the implementation are discussed next. 

2.3. ML implementation methodology 

To perform prediction using ML algorithms for any data, the 
following steps need to be taken: (1) data preprocessing, (2) tuning of 
hyperparameters for several ML models, (3) finding the optimum ML 
algorithm, and (4) training the optimum ML algorithm and testing its 
performance. In addition, trained ML algorithms are useful for per-
forming sensitivity analysis to study the response in the outcome as a 
function of changes in input variables. Generally, K-fold cross-validation 
is performed on the training set to determine the best set of hyper-
parameters. Once the best set of hyperparameters is found, then the 
performance of the models is tested on the testing set. In this work, we 
have used a different approach because we are interested in generating 
complete time-profiles of 4 randomly selected experiments, while using 
the remaining 21 experiments as the training set. A more stringent test of 
ML algorithms as well a more practically useful approach is that the 
hyperparameters of the models are fine-tuned only once and not for 
every new set of 21 experiments. Therefore, our methodology involves 
two steps: first, selection of the best ML model, and second, training and 
testing of the best ML model. For the first step, we use all data-points for 
tuning the hyperparameters of each ML algorithm (ANN, RF, SVR, KNN). 
Once the hyperparameters are selected, then we randomly select 75% of 
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the data-points for the training set and 25% for the testing set. The ANN, 
SVR, RF and KNN algorithms (with optimized hyperparameters) are 
then trained on the training set and their performance is compared 
against the testing set. Once the best ML algorithm is selected with the 
optimized set of hyperparameters, then the ML algorithm and the 
hyperparameters are never changed. In the second step, 4 experiments 
are randomly selected as testing set and 21 remaining experiments are 
selected as the training set. It should be noted that in this procedure, the 
testing set remains completely hidden during the training of the ML 
algorithm. Each of the steps needed for the ML implementation will be 
discussed in detail below. 

Step 1. Data preprocessing. The first step is to ensure that the dataset 
does not have any missing or incorrect values [45,46]. Data points 
with missing values are either removed or the missing values are 
replaced with the mean or mode or a best guess value of that vari-
able. If a variable has many missing values, then the variable may be 
removed from the dataset. Different variables have a different range 
of values and so it is important to rescale the variables. One way is to 
rescale the variables so that all the values are between 0 and 1. 
Another way to rescale the variables is to assume that the values are 
normally distributed and so one can convert them into standard 
normal variables by subtracting out the mean and dividing by the 
standard deviation. Table 2 lists the variables and their ranges in the 
experimental data of inhibited corrosion rate measurements that we 
have modeled in this work. The dataset includes eight numerical and 
five categorical features. Categorical features are converted to 
dummy variables. For example, if the categorical feature “Brine 
type” has two possible values, A and B, then a dummy variable for A 
can be created that takes two possible values {0, 1} with 1 repre-
senting brine type A and 0 representing brine type B. In our work, all 
numerical variables except Time were rescaled to have a standard 
normal distribution [46]. In the implementation of our ML strategy, 
we found that for accurate modeling of the experiments, some 
additional data preprocessing steps were needed. First, the Time was 
set to zero at each injection time of the corrosion inhibitor. 
Furthermore, the following new input features were added: (a) prior 
corrosion inhibitor concentration: this feature takes the value of the 
inhibitor concentration present in the system prior to a new dose; (b) 
initial corrosion rate: this feature specifies the corrosion rate at the 
beginning of the experiment; and (c) type of test: this categorical 
feature is set to 1 if the experiment involved more than one dose of 
corrosion inhibitor, that is for a sequential dosing experiment, and is 
set to 0 if there is only a single dose of corrosion inhibitor in the 
experiment. 
Step 2. Tuning hyperparameters. One needs to determine the best 
hyperparameters for each ML algorithm (ANN, RF, SVR, KNN), that 
is the hyperparameters that will result in the smallest mean squared 
error (MSE) [44]. The best hyperparameters were found by per-
forming a grid search over a range of hyperparameter values, same 
approach as our previous research work [47]. For each set of 

hyperparameter values, a 5-fold cross-validation method was used 
on the data. In 5-fold cross-validation, the data is divided into 5 
subsets. The ML algorithm is then trained using the data in four 
subsets, and the performance of the trained algorithm is tested on the 
5th subset. This procedure is repeated 5 times, each time choosing a 
different subset for testing the performance [33,34]. Then, the 
average performance of the ML algorithm (in our case, MSE score) is 
determined. Using this methodology, the best hyperparameter values 
of the different ML models (ANN, SVM, RF, and KNN) were deter-
mined. For ANN and RF models, 20 iterations of 5-fold 
cross-validation were performed. 
Step 3. Finding the optimum ML model. After tuning the hyper-
parameters, one needs to select the best ML model out of ANN, RF, 
SVR and KNN models. For this purpose, the entire dataset was 
divided into a training set, comprising of 75% of the data, and the 
remaining as the testing set. The ML models were trained on the 
training set, and then the model with the best performance on the 
testing set, that is the one with the lowest MSE, was selected as the 
optimum ML model. 
Steps 4. Training the optimum ML model and testing its perfor-
mance. One useful and practical application of our ML modeling is to 
be able to predict results of complete experiments of corrosion rates 
as a function of time for given environmental and operational con-
ditions and dosage schedule of corrosion inhibitors. To check the 
performance of our optimum ML model, a different strategy was 
adopted compared to the one used in Step 3, where 75% of data 
points used for training were selected from all the experiments, 
meaning that none of the individual experiments were completely 
hidden from the model. To make it more challenging for the model, 
the process of training was repeated but this time by using data from 
randomly selected 21 out of 25 experiments, which formed the 
training set; the remaining 4 experiments were completely hidden 
from the model and were later used as the testing set. In cases where 
an experiment was repeated multiple times and was randomly 
selected for the testing set, all its replicas were hidden from the 
model during training. 

Sensitivity analysis. A trained ML model can also be used to study the 
behavior of the system as a function of changes in the values of the input 
features. In our study, the time-varying corrosion rate was predicted as a 
function of inhibitor type, inhibitor concentration, CO2 partial pressure, 
temperature, wall shear stress, and brine type using the trained ML 
model. 

3. Results and discussion 

3.1. Identifying the best ML model 

The ranges of the hyperparameters that were tested for each of the 
ML algorithms in this study are listed in Table 3. For ANN, the number of 
hidden layers (nHLs) and the number of nodes per hidden layer (nNodes) 
were the two hyperparameters that were varied. In SVR, two hyper-
parameters were varied: the kernel coefficient, γ, and the regularization 
parameter, cost. As discussed above, in SVR, the input variables are 
transformed to higher dimensions using kernel functions. We have used 
Gaussian functions as the kernels. Here, γ refers to the inverse of the 
standard deviation or the spread of the Gaussian functions used. The cost 
parameter controls how many kernel functions are employed in the SVR. 
For RF, we choose the number of decision trees, nTR, and the maximum 
fraction of input variables that can be used to create a decision tree, mFF, 
as the two hyperparameters. For KNN, the value of K, that is, the number 
of nearest neighbors that one should consider is taken as the hyper-
parameter. Alongside, we studied the performance of KNN models when 
equal weight is given to every neighbor (weight set to “uniform”) and 
when nearer neighbors are given more weight than the farther ones 
(weight set to “distance”). It should be noted that for each ML algorithm, 

Table 3 
Ranges of values for the hyperparameters of the studied algorithms. (nHLs: 
number of hidden layers, nNodes: number of nodes per hidden layer; γ-gamma: 
kernel coefficient, cost: regularization parameter; nTR: number of trees, mFF: 
maximum fraction of features to be split for a decision tree; and K: number of 
neighbors).  

ANN  SVR  RF  KNN  

nHLs nNodes γ cost nTR mFF K weights  

1  2  1.0  1  10  0.6  3 uniform  
2  4  0.1  5  50  0.7  4 distance  
3  6  0.01  10  100  0.8  5   
4  8  0.001  100  200  0.9  6   
5  10  0.0001  1000  500  1.0  7   
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only the hyperparameters that are understood to have the largest effect 
on the performance were studied, while choosing the default suggested 
values of the other hyperparameters. We have implemented the ML al-
gorithms using the Scikit Learn package in Python, and the default 
hyperparameters for each ML algorithm can be found in the Scikit Learn 
documentation online [48]. 

The results of the 5-fold cross-validation of the ML algorithms for 
different values of the hyperparameters are shown in Fig. 2. For ANN 
(Fig. 2A), it was observed that the mean squared error (MSE) decreased 
with the increase in the number of nodes per hidden layer. The decrease 

in the MSE became gradual beyond 6 nodes. Increasing the number of 
nodes beyond 8 resulted in a slight increase in the MSE. Therefore, 8 
nodes per hidden layer with 4 hidden layers was the optimum archi-
tecture. In the case of SVR (Fig. 2B), it was observed that the perfor-
mance was sub-optimal for small values of γ (< 0.001) and was strongly 
dependent on the cost. For γ > 0.01, the performance showed significant 
improvement and was not overly sensitive to the cost. The MSE was 
observed to decrease with the cost, and so the SVM model with cost and γ 
set to 1000 and 1, respectively, was the optimum SVR model. In the case 
of RF model (Fig. 2C), the best performance (lowest MSE) was observed 

Fig. 2. Performance of A) Artificial Neural Network (ANN), B) Support Vector machine Regression (SVR), C) Random Forest (RF), and D) K Nearest Neighbors (KNN) 
on experimental data of corrosion rate for different values of the hyperparameters. Each point is the average of 20 independent iterations of training followed by 
testing on the testing set. Lines are guides for readability. 

Table 4 
Optimum values of the hyperparameters along with their MSE are reported. Note that the reported MSEs are the average of 20 independent iterations per testing action. 
(nHLs: number of hidden layers, nNodes: number of nodes per hidden layer; γ-gamma: kernel coefficient, cost: regularization parameter; nTR: number of trees, mFF: 
maximum fraction of features to be split for a decision tree; and K: number of neighbors).   

ANN  SVR  RF  KNN   

nHLs nNodes γ cost nTR mFF K weights 

Hyperparameters 4  8  1  1000  500  0.7  3 distance 
MSE 0.048 ± 0.010 0.017 ± 0.001 0.002 ± 0.001 0.027 ± 0.001  
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when the mFF was set to 0.7. Beyond 200 decision trees, some 
improvement in the performance was observed and so the RF model 
with 500 trees was the optimum RF model. In the case of KNN (Fig. 2D), 
a V-shaped curve of the MSE was obtained, implying the K = 3 as the 
optimum choice. Also, having the weight based on the distance rather 
than having a uniform weight for all the neighbors yielded lower MSE. 
The optimum set of hyperparameters for each ML model are reported in 
Table 4. 

It was found that RF is the best algorithm among those studied with 
the MSE of 0.002 ± 0.001 (Fig. 3A). Therefore, RF was selected as the 
ML model for our investigations of corrosion rate as a function of time. 
The parity plot of the predictions of the RF model of the corrosion rate 
on the testing set, which is randomly selected as 25% of the whole 
26,855 data points, is shown in Fig. 3B. The parity plot shows that the RF 
model is quite accurate in predicting the experimental results of corro-
sion rate measurements. 

3.2. Predictions of time-dependent corrosion rates using RF 

After selecting RF for our analysis, we need to evaluate its perfor-
mance in predicting the entire kinetics of an experiment. Recall that now 
the RF model was trained using data from randomly selected 21 out of 
25 experiments, while keeping the remaining 4 experiments completely 
hidden from the model as the testing set. The first set of results presented 
here are from experiments with sequential dosing of the inhibitor. Fig. 4 
shows eight experiments with pre-corrosion and their prediction by the 
RF model. Corrosion rates are plotted on a logarithmic scale to be able to 
show on the same graph, both the high corrosion rates at the beginning 
of the experiment before inhibitor injection and the low corrosion rates 
after inhibition. It can be observed that the initial corrosion rates reflect 
the severity of the aqueous environment that also has an impact on the 
time-dependent corrosion rates. For example, the conditions of experi-
ments shown in Fig. 4 (A, D, and E) were more aggressive, having the 
initial corrosion rates in the range 20 – 30 mm/y, which can be attrib-
uted primarily to the higher partial pressures of CO2 in these experi-
ments (pCO2 = 2.5, 1.57, and 2.5 bar respectively), This is clear when 
comparing to the conditions presented in Fig. 4 (B, C, F, G, and H) where 
the pCO2 = 0.51 bar and the initial corrosion rates were about 10 mm/y. 
It is observed that the time-dependent corrosion rates depend on the 
dose schedule of the inhibitors. One would imagine that the final 
corrosion rates (after inhibition) are also related to the inhibitor type 
and the inhibitor dosing, but this actually is not the case.* For example, 
for both CI-1, shown in Fig. 4A and Fig. 4B and CI-2, shown in Fig. 4C 
and Fig. 4D the final corrosion rate seems to be more related to the 
severity of the environment, rather than to the inhibitor type. While the 

experiments with severely corrosive conditions were given a higher 
concentration of initial dose of the corrosion inhibitor, the severity of 
the environment still had the major impact on the final corrosion rate 
observed. For example: in the experiments shown in Fig. 4 (A, D, and E) 
the final corrosion rate stayed relatively high, and in the experiments 
shown in the Fig. 4 (D and E) cases – it never decreased below 0.1 mm/y. 
This is mostly related to the high pCO2 in those experiments and a higher 
temperature (106 ◦C vs. 80 ◦C); it is well known that organic corrosion 
inhibitor performance deteriorates at a higher temperature. In the same 
experimental condition, shown in Fig. 4D, we see a substantial scatter of 
the inhibited corrosion rate results (with a factor of 5 in the 9 “repli-
cated” experiments), which is primarily related to the uncontrolled pH 
in those experiments and compounded by the severe conditions for in-
hibition (high pCO2 and high temperature). Finally, there seems to be no 
influence of brine type or ionic strength on the corrosion rate under any 
condition used in this study. 

When it comes to predictions, we can observe that the RF model was 
quite accurate in reproducing the experimentally observed values in all 
cases. This holds true even for the experiments shown in Fig. 4D, where 
a large scatter in the experimental results is seen, yet the RF model falls 
within the scatter band. In that condition, the prediction from the RF 
model shows some “jumps” in the corrosion rate at times when the 
corrosion inhibitors were injected into the system, which is clearly an 
unrealistic behavior of the model, but, nevertheless, the overall pre-
diction from the model remains reasonable. An outlier to some extent is 
the case presented in Fig. 4E where the conditions were rather extreme 
(pCO2 = 2.5 bar, wall shear stress of 277 Pa), hence the RF model had 
more trouble in predicting the inhibited corrosion rate evolution, even if 
it got the final corrosion rate right. Except for the Fig. 4E, for which the 
mean squared error (MSE) is 0.362, for the other experiments, the 
overall MSE ranges from 0.008 to 0.057, which is a pretty good accuracy 
of the RF model. 

Next, we look at single-dose experiments with pre-corrosion shown 
in Fig. 5. In all cases, we have similar initial corrosion rates, which are 
quite high: 5 – 10 mm/y, indicating a severe corrosion environment. 
Consequently, a high concentration of corrosion inhibitors was injected 
in these experiments. After inhibition, similar conclusions can be drawn 
as we had for the experiments with sequential dosing of the inhibitor, 
discussed above. One can clearly see that neither does the inhibitor type 
nor its dose directly correlates to the final corrosion rate. † The same is 
true for brine’s ionic strength. It is understood that beyond the surface 
saturation concentration of corrosion inhibitors, little or no improve-
ment in corrosion inhibition is reported [49]. The final corrosion rates 
were low (below 0.2 mm/y) in all cases, except in the experiment shown 
in Fig. 5C, which can be explained by the high temperature (132 ◦C), 
which made it hard for the organic inhibitor to perform well, even if the 
final dose was extremely high: 100 ppm. Just like in the previous 
example where sequential dosing was used, the large scatter in the 
inhibited corrosion rate was obtained in experiments where the pH was 

Fig. 3. A) Comparison of performance of the 
best model for each ML model. Error bars are 
obtained by performing 20 independent itera-
tions of each model. B) Parity plot between the 
predicted corrosion rates (mm/y) by the RF 
model and the experimental values; The re-
ported MSE value is the average of 20 inde-
pendent iterations of training followed by 
testing on the testing set of the RF model. In 
both figures, predictions are made on the 
testing set which is randomly selected as 25% of 
the available 26,855 data points.   

1 This conclusion is limited to the two inhibitors considered here and is not a 
general rule. 
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not controlled, shown in Fig. 5A. Despite all this complexity, and scatter, 
we can argue that the RF model performed quite well, in all cases staying 
within the error margins of the experimental results. The MSEs of the 
predictions range from 0.025 to 0.093 except for the Fig. 5C experiment, 
for which the MSE is 0.430. The same conclusion can be reached by 
inspecting the additional results shown in Fig. 6 obtained without 
pre-corrosion, with the MSEs of the predictions ranging from 0.006 to 
0.037. 

3.3. Sensitivity to input variables 

Trained ML models can predict outcomes for conditions that have 
not been studied experimentally and thus can be employed to perform 
parametric studies to investigate how systematically changing one input 
affects the results. In Fig. 7, such a parametric study has been performed 
to determine the effect of changing the corrosion inhibitor type (A) and 
concentration (B), CO2 partial pressure (C), temperature (D), wall shear 
stress (E), and brine type (F), on the corrosion rates. The baseline 
corrosion scenario was quite severe: high temperature (130 ◦C) and high 
pCO2 = 12 bar. In the simulation, a single dose of inhibitor was added 
after 4 h of pre-corrosion and the whole simulation lasted 22 h. 

Clearly, the type of inhibitor injected, does not seem to matter, as 
shown in Fig. 7A, which is consistent with the experimental results 
shown in Fig. 4, Fig. 5, and Fig. 6. The effect of inhibitor concentration is 
shown in Fig. 7B and is logical – an increase in inhibitor concentration 
between 100 and 300 ppm leads to somewhat lower inhibited corrosion 
rates, whereas increasing the dose to 1000 ppm offers little or no addi-
tional benefits, according to the RF model. This seems to agree with our 
understanding that at some high inhibitor bulk concentration, a surface 
saturation concentration is reached [50]. Overall, it shows that the 
interpolation capability of the RF model (between 100 and 300 ppm) is 
excellent, and that this carries over to extrapolation when we look at 
concentrations up to 1000 ppm, which were not used in the experi-
ments. On the other hand, the extrapolation of results towards lower 
concentrations (using 10 ppm which was never tested in single-dose 
experiments with pre-corrosion) gave erroneous results – a better in-
hibitor performance. This points to the danger of extrapolation using ML 
models such as RF, when the outcome is unpredictable. One possible 
remedy for this problem is to use active learning, which is a 
semi-supervised learning algorithm that continuously updates the 
training and testing sets and increases the extrapolation capability of ML 
models. 

Similar results are seen when the pCO2 was varied, as shown in 
Fig. 7C, where the interpolation in the range of pCO2 = 0.5–12 bar fol-
lows the logical trends as seen in the experimental results – higher pCO2 
leading to higher corrosion rates. However, when the pCO2 is increased 
further (leading to extrapolation) the sensitivity of the corrosion rate to 
pCO2 vanished, what is not an expected result. When it comes to tem-
perature effects, shown in Fig. 7D, the interpolation capability of the RF 
model was fine, and the extrapolation to lower temperatures (e.g., 

30 ◦C) worked as well, leading to even lower corrosion rates and better 
inhibition, as expected. Finally, as shown in Fig. 7E and Fig. 7F, there 
was no effect of the wall shear stress and brine type, as was deduced 
from the experimental results. 

Finally, it is important to mention that throughout the course of this 
study, the ML modeling effort was continuously discussed with the ex-
perts in corrosion science and those with field experience, to ensure that 
(1) the models were meeting the desired level of accuracy in the pre-
dictions and (2) the modeling approach is logical and meaningful when 
it comes to practical applications. Their input into building, training, 
evaluating, and interpreting results from ML modeling cannot be over-
emphasized. Therefore, a hypothetical scenario where the role of 
corrosion experts can be readily replaced by various ML algorithms 
seems to be both unrealistic and unreliable. On the other hand, ML al-
gorithm are another excellent addition to the toolbox of corrosion ex-
perts that can make them more effective, complement other methods 
they use to reach conclusions and make predictions, and can improve 
the corrosion experts’ overall productivity and quality of performance. 
Trained ML models reduce engineering time and testing costs, and these 
models can continue to learn as new experimental data is obtained, 
thereby improving in their prediction capabilities. 

4. Conclusions 

Given that there are many environmental and operational variables 
that affect the corrosion rate of carbon steel in the presence of corrosion 
inhibitors, an exhaustive study of all possible combinations of the var-
iables is prohibitive. Therefore, a well-trained ML model can be 
employed to alleviate the need for such experiments.  

• Experiments, conducted by four independent laboratories, 
measuring the effect of dosage and dose schedule of corrosion in-
hibitors on the corrosion rates of carbon steel as a function of time 
are modeled using various supervised machine learning models 
[Artificial neural networks (ANN), random forest (RF), support 
vector machine (SVM), and K nearest neighbors (KNN)]. In these 
experiments, the severity of corrosion environment was varied by 
changing environmental conditions, including temperature, partial 
pressure of CO2, brine concentration, ionic strength, wall shear-stress 
etc.  

• The experiments show that the time-profile of corrosion rates depend 
on the dose schedule of the inhibitors, while the final rates depend 
mainly on the environment severity.  

• Results show that the RF model outperformed the other models for 
this dataset. The entire time trend of the corrosion rate of mild steel is 
quite well predicted by the trained RF model with the mean squared 
error of the prediction in the range from 0.005 to 0.093. 

• Sensitivity of corrosion rates to changes in the environmental vari-
ables are well-predicted by the trained RF model, which eliminates 

Fig. 4. Comparison between the predicted (red) and the experimentally reported (grey) corrosion rates as a function of time for sequential dosing experiments with 
pre-corrosion. Below are the details of the experiments.   

A B C D E F G H 

CI type CI-2 CI-2 CI-1 CI-1 CI-1 CI-2 CI-1 CI-2 
Exposure duration ~ 90 hrs. ~ 50 hrs. ~ 50 hrs. ~ 70 hrs. ~ 80 hrs. ~ 80 hrs. ~ 40 hrs. ~ 50 hrs. 
pCO2 2.5 bar 0.51 bar 0.51 bar 1.57 bar 2.5 bar 0.51 bar 0.51 bar 0.51 bar 
Temperature 80 ◦C 80 ◦C 80 ◦C 106 ◦C 80 ◦C 80 ◦C 80 ◦C 80 ◦C 
pH controlled controlled controlled uncontrolled controlled controlled controlled controlled 
Wall shear stress 277 Pa 20 Pa 20 Pa 20 Pa 277 Pa 20 Pa 20 Pa 20 Pa 
Brine ion. strength 0.51 M 0.615 M 2.31 M 2.31 M 0.51 M 0.51 M 0.615 M 2.31 M 
Brine type A A B B A A A B 
MSE 0.034 0.011 0.024 0.057 0.362 0.053 0.009 0.008  

.  
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Fig. 5. Comparison between the predicted (red) and the experimentally reported (grey) corrosion rates as a function of time for single dose experiments with pre- 
corrosion. Below are the details of the experiments.  

Conditions / Figure A B C D E F 
CI type CI-2 CI-1 CI-1 CI-2 CI-2 CI-2 
Exposure duration ~ 30 hrs. ~ 20 hrs. ~ 22 hrs. ~ 25 hrs. ~ 21 hrs. ~ 28 hrs. 
pCO2 0.51 bar 0.51 bar 12 bar 0.51 bar 0.51 bar 0.51 bar 
Temperature 80◦C 80◦C 132◦C 80◦C 80◦C 120◦C 
pH uncontrolled controlled uncontrolled controlled controlled uncontrolled 
Wall shear stress 20 Pa 20 Pa 20 Pa 20 Pa 20 Pa 20 Pa 
Brine ionic strength 0.615 M 2.31 M 0.615 M 0.615 M 2.31 M 0.615 M 
Brine type A A A A A A 
MSE 0.093 0.025 0.430 0.041 0.081 0.034  

.  
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the need to perform extensive experiments for different solution 
conditions. 
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[34] A. Géron, Hands-on machine learning with scikit-learn, keras, and tensorflow: 
concepts. Tools, and Techniques to Build Intelligent Systems, O’Reilly Media, Inc, 
2019. 

[35] L. Breiman, Random forests, Mach. Learn 45 (2001) 5–32, https://doi.org/ 
10.1023/A:1010933404324. 

[36] L. Breiman, Arcing classifier (with discussion and a rejoinder by the author), Ann. 
Stat. 26 (1998) 801–849, https://doi.org/10.1214/aos/1024691079. 

[37] M. Aghaaminiha, S.A. Ghanadian, E. Ahmadi, A.M. Farnoud, A machine learning 
approach to estimation of phase diagrams for three-component lipid mixtures, 
Biochim. Biophys. Acta BBA - Biomembr. 1862 (2020), 183350, https://doi.org/ 
10.1016/j.bbamem.2020.183350. 

[38] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural 
Netw. 4 (1991) 251–257, https://doi.org/10.1016/0893-6080(91)90009-T. 

[39] J.M. Benitez, J.L. Castro, I. Requena, Are artificial neural networks black boxes? 
IEEE Trans. Neural Netw. 8 (1997) 1156–1164, https://doi.org/10.1109/ 
72.623216. 

[40] R. Bala, D.D. Kumar, Classification using ANN: a review, Int. J. Comput. Intell. Res. 
13 (2017) 1811–1820. 

[41] S.R. Gunn, Support vector machines for classification and regression, ISIS Tech. 
Rep. 14 (1998) 5–16. 

[42] T. Cover, P. Hart, Nearest neighbor pattern classification, IEEE Trans. Inf. Theory 
13 (1967) 21–27, https://doi.org/10.1109/TIT.1967.1053964. 

[43] S. Xia, Z. Xiong, Y. Luo, L. Dong, G. Zhang, Location difference of multiple 
distances-based k-nearest neighbors algorithm, Knowl. -Based Syst. 90 (2015) 
99–110, https://doi.org/10.1016/j.knosys.2015.09.028. 

[44] M. Claesen, B. De Moor, Hyperparameter Search in Machine Learning, 
ArXiv150202127 Cs Stat., 2015. 

[45] A. Famili, W.-M. Shen, R. Weber, E. Simoudis, Data preprocessing and intelligent 
data analysis, Intell. Data Anal. 1 (1997) 3–23, https://doi.org/10.3233/IDA-1997- 
1102. 

[46] S.B. Kotsiantis, D. Kanellopoulos, P.E. Pintelas, Data preprocessing for supervised 
leaning, Int. J. Comput. Sci. 1 (2006) 111–117. 

[47] M. Aghaaminiha, R. Mehrani, T. Reza, S. Sharma, Comparison of machine learning 
methodologies for predicting kinetics of hydrothermal carbonization of selective 
biomass, Biomass. Convers. Biorefin. (2021), https://doi.org/10.1007/s13399- 
021-01858-3. 

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, 
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 
D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, Scikit-learn: machine 
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